Abstract:Few-shot class-incremental learning (FSCIL) is a paradigm where a model, initially trained on a dataset of base classes, must adapt to an expanding problem space by recognizing novel classes with limited data. We focus on the challenging FSCIL setup where a model receives only a single sample (1-shot) for each novel class and no further training or model alterations are allowed after the base training phase. This makes generalization to novel classes particularly difficult. We propose a novel approach predicated on the hypothesis that base and novel class embeddings have structural similarity. We map the original embedding space into a residual space by subtracting the class prototype (i.e., the average class embedding) of input samples. Then, we leverage generative modeling with VAE or diffusion models to learn the multi-modal distribution of residuals over the base classes, and we use this as a valuable structural prior to improve recognition of novel classes. Our approach, Gen1S, consistently improves novel class recognition over the state of the art across multiple benchmarks and backbone architectures.
Abstract:On-device large language models commonly employ task-specific adapters (e.g., LoRAs) to deliver strong performance on downstream tasks. While storing all available adapters is impractical due to memory constraints, mobile devices typically have sufficient capacity to store a limited number of these parameters. This raises a critical challenge: how to select representative adapters that generalize well across multiple tasks - a problem that remains unexplored in existing literature. We propose a novel method D2C for adapter clustering that leverages minimal task-specific examples (e.g., 10 per task) and employs an iterative optimization process to refine cluster assignments. The adapters within each cluster are merged, creating multi-task adapters deployable on resource-constrained devices. Experimental results demonstrate that our method effectively boosts performance for considered storage budgets.
Abstract:Large language models (LLMs) often rely on user-specific memories distilled from past interactions to enable personalized generation. A common practice is to concatenate these memories with the input prompt, but this approach quickly exhausts the limited context available in on-device LLMs. Compressing memories by averaging can mitigate context growth, yet it frequently harms performance due to semantic conflicts across heterogeneous memories. In this work, we introduce a clustering-based memory compression strategy that balances context efficiency and personalization quality. Our method groups memories by similarity and merges them within clusters prior to concatenation, thereby preserving coherence while reducing redundancy. Experiments demonstrate that our approach substantially lowers the number of memory tokens while outperforming baseline strategies such as naive averaging or direct concatenation. Furthermore, for a fixed context budget, clustering-driven merging yields more compact memory representations and consistently enhances generation quality.
Abstract:Test-time Reinforcement Learning (TTRL) has shown promise in adapting foundation models for complex tasks at test-time, resulting in large performance improvements. TTRL leverages an elegant two-phase sampling strategy: first, multi-sampling derives a pseudo-label via majority voting, while subsequent downsampling and reward-based fine-tuning encourages the model to explore and learn diverse valid solutions, with the pseudo-label modulating the reward signal. Meanwhile, in-context learning has been widely explored at inference time and demonstrated the ability to enhance model performance without weight updates. However, TTRL's two-phase sampling strategy under-utilizes contextual guidance, which can potentially improve pseudo-label accuracy in the initial exploitation phase while regulating exploration in the second. To address this, we propose context-guided TTRL (CG-TTRL), integrating context dynamically into both sampling phases and propose a method for efficient context selection for on-device applications. Our evaluations on mathematical and scientific QA benchmarks show CG-TTRL outperforms TTRL (e.g. additional 7% relative accuracy improvement over TTRL), while boosting efficiency by obtaining strong performance after only a few steps of test-time training (e.g. 8% relative improvement rather than 1% over TTRL after 3 steps).
Abstract:We introduce MOCHA (Multi-modal Objects-aware Cross-arcHitecture Alignment), a knowledge distillation approach that transfers region-level multimodal semantics from a large vision-language teacher (e.g., LLaVa) into a lightweight vision-only object detector student (e.g., YOLO). A translation module maps student features into a joint space, where the training of the student and translator is guided by a dual-objective loss that enforces both local alignment and global relational consistency. Unlike prior approaches focused on dense or global alignment, MOCHA operates at the object level, enabling efficient transfer of semantics without modifying the teacher or requiring textual input at inference. We validate our method across four personalized detection benchmarks under few-shot regimes. Results show consistent gains over baselines, with a +10.1 average score improvement. Despite its compact architecture, MOCHA reaches performance on par with larger multimodal models, proving its suitability for real-world deployment.
Abstract:Large language models (LLMs) often leverage adapters, such as low-rank-based adapters, to achieve strong performance on downstream tasks. However, storing a separate adapter for each task significantly increases memory requirements, posing a challenge for resource-constrained environments such as mobile devices. Although model merging techniques can reduce storage costs, they typically result in substantial performance degradation. In this work, we introduce HydraOpt, a new model merging technique that capitalizes on the inherent similarities between the matrices of low-rank adapters. Unlike existing methods that produce a fixed trade-off between storage size and performance, HydraOpt allows us to navigate this spectrum of efficiency and performance. Our experiments show that HydraOpt significantly reduces storage size (48% reduction) compared to storing all adapters, while achieving competitive performance (0.2-1.8% drop). Furthermore, it outperforms existing merging techniques in terms of performance at the same or slightly worse storage efficiency.
Abstract:To have a seamless user experience on immersive AR/VR applications, the importance of efficient and effective Neural Network (NN) models is undeniable, since missing body parts that cannot be captured by limited sensors should be generated using these models for a complete 3D full-body reconstruction in virtual environment. However, the state-of-the-art NN-models are typically computational expensive and they leverage longer sequences of sparse tracking inputs to generate full-body movements by capturing temporal context. Inevitably, longer sequences increase the computation overhead and introduce noise in longer temporal dependencies that adversely affect the generation performance. In this paper, we propose a novel Multi-Layer Perceptron (MLP)-based method that enhances the overall performance while balancing the computational cost and memory overhead for efficient 3D full-body generation. Precisely, we introduce a NN-mechanism that divides the longer sequence of inputs into smaller temporal windows. Later, the current motion is merged with the information from these windows through latent representations to utilize the past context for the generation. Our experiments demonstrate that generation accuracy of our method with this NN-mechanism is significantly improved compared to the state-of-the-art methods while greatly reducing computational costs and memory overhead, making our method suitable for resource-constrained devices.
Abstract:Artificial Intelligence (AI) technologies have revolutionized numerous fields, yet their applications often rely on costly and time-consuming data collection processes. Federated Learning (FL) offers a promising alternative by enabling AI models to be trained on decentralized data where data is scattered across clients (distributed nodes). However, existing FL approaches struggle to match the performance of centralized training due to challenges such as heterogeneous data distribution and communication delays, limiting their potential for breakthroughs. We observe that many real-world use cases involve hybrid data regimes, in which a server (center node) has access to some data while a large amount of data is distributed across associated clients. To improve the utilization of decentralized data under this regime, address data heterogeneity issue, and facilitate asynchronous communication between the server and clients, we propose a dual learning approach that leverages centralized data at the server to guide the merging of model updates from clients. Our method accommodates scenarios where server data is out-of-domain relative to decentralized client data, making it applicable to a wide range of use cases. We provide theoretical analysis demonstrating the faster convergence of our method compared to existing methods. Furthermore, experimental results across various scenarios show that our approach significantly outperforms existing technologies, highlighting its potential to unlock the value of large amounts of decentralized data.
Abstract:In recent years, vision transformers with text decoder have demonstrated remarkable performance on Scene Text Recognition (STR) due to their ability to capture long-range dependencies and contextual relationships with high learning capacity. However, the computational and memory demands of these models are significant, limiting their deployment in resource-constrained applications. To address this challenge, we propose an efficient and accurate STR system. Specifically, we focus on improving the efficiency of encoder models by introducing a cascaded-transformers structure. This structure progressively reduces the vision token size during the encoding step, effectively eliminating redundant tokens and reducing computational cost. Our experimental results confirm that our STR system achieves comparable performance to state-of-the-art baselines while substantially decreasing computational requirements. In particular, for large-models, the accuracy remains same, 92.77 to 92.68, while computational complexity is almost halved with our structure.




Abstract:Scaling architectures have been proven effective for improving Scene Text Recognition (STR), but the individual contribution of vision encoder and text decoder scaling remain under-explored. In this work, we present an in-depth empirical analysis and demonstrate that, contrary to previous observations, scaling the decoder yields significant performance gains, always exceeding those achieved by encoder scaling alone. We also identify label noise as a key challenge in STR, particularly in real-world data, which can limit the effectiveness of STR models. To address this, we propose Cloze Self-Distillation (CSD), a method that mitigates label noise by distilling a student model from context-aware soft predictions and pseudolabels generated by a teacher model. Additionally, we enhance the decoder architecture by introducing differential cross-attention for STR. Our methodology achieves state-of-the-art performance on 10 out of 11 benchmarks using only real data, while significantly reducing the parameter size and computational costs.